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Purpose. Development of reliable computational models to predict/classify milk-to-plasma (M/P) drug

concentration ratio remains a challenging object. Support vector machine (SVM) method, as a new

algorithm, was constructed to distinguish the potential risk of drugs to nursing infants.

Methods. Each drug was represented by a large pool of descriptors, of which five were found to be most

important for constructing the predictive models. Next, two classification models, linear discriminant

analysis (LDA) and SVM, were developed with bootstrapping validation based on the selected

molecular descriptors.

Results and Conclusions. The classification accuracy of training set and test set for SVM was 90.63 and

90.00%, respectively. The total accuracy for SVM was 90.48%, which was higher than that of LDA

(77.78%). Comparison of the two methods shows that the performance of SVM was better than that of

LDA, which implies that the SVM method is an effective tool in evaluating the risk of drugs when

experimental M/P ratios have not been investigated.

KEY WORDS: bootstrapping validation; linear discriminant analysis (LDA); milk /plasma drug
concentration (M/P) ratio; molecular descriptors; support vector machine (SVM).

INTRODUCTION

The issue of which drugs are safe to take during lactation is
quite important and complicated. When nursing mothers take
drugs, nearly all drugs are excreted into breast milk and are
bioavailable to the infants (1). Generally, most drugs do not pose
a significant problem to nursing infants, because medication
ingested by infants seem to be proportionally small, usually less
than 1% of the maternal dose. However, considering the size of
infants and differences in metabolism between infants and
adults, physicians need to obtain more accurate information to

decide which drugs can be safely used and which drugs should
be used with caution during lactation (2Y4).

A direct assessment of drugs" risk to infants entails the
measurement of drug concentrations in breast milk and
extrapolation to other doses/patients by using the milk/
plasma (M/P) drug concentration ratio, which is equivalent
to drug concentration in the breast milk divided by that in the
maternal serum. However, it is difficult to enroll nursing
women in a trial solely to assess the pharmacokinetics of a
compound in milk and plasma (5). Accurate determination of
the M/P ratio also requires careful attention to experimental
details, and collection of serial milk and plasma samples.
Given the difficulties, combinations of experiments in vitro/
in vivo and modeling approaches should be sufficient to
determine whether a particular drug will show high M/P ratio
in human milk, and thus pose a potential risk to nursing
infants.

Linear regression methods have been developed relating
M/P ratio to the drug"s physicalYchemical properties. Meskin
and Lien (6) were the first to include the physicochemical
properties of a drug in the prediction of M/P ratios, and
Agatonovic-Kustrin et al. (5,7) extended this method by using
artificial neural networks (ANNs) to allow the prediction of
ratios. It should be noted that in most cases, for a certain
drug, the M/P ratios measured under different conditions
varied significantly. For instance, the maximum M/P ratio of
acyclovir was 4.1, whereas the minimum ratio was only
0.6Vrepresenting a sevenfold difference between the two
values. It seemed that the predictive models based on these
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Table I. Compounds and Their Corresponding Classification

No. Compounds

Predicted M/P

Experimental classification

Predicted classification

Average Minimum Maximum LDA SVM

Training seta

1 Cefoxitin 0 0 0 j j j

2 Ibuprofen 0 0 0 j j j

3 Estradiol 0 0 0 j j j

4 Warfarin 0 0 0 j +** j

5 Tolmetin 0.005 0.005 0.005 j j j

6 Cephalexin 0.012 0.01 0.014 j j j

7 Suprofen 0.014 0.014 0.014 j j j

8 Carbenicillin 0.02 0.02 0.02 j j j

9 Amoxycillin 0.028 0.013 0.043 j j j

10 Roxithromycin 0.035 0.03 0.04 j j j

11 Ceftriaxone 0.045 0.03 0.06 j j j

12 Valproic acid 0.053 0.01 0.096 j j +**

13 Oxazepam 0.1 0.1 0.33 j j j

14 Sulfamethoxazole 0.1 0.1 0.1 j +** j

15 Quinapril 0.12 0.12 0.12 j +** j

16 Rosaramicin 0.12 0.12 0.12 j j j

17 Temazepam 0.14 0.14 0.14 j j j

18 Mefloquine 0.145 0.13 0.16 j j j

19 Cefotaxime 0.16 0.16 0.16 j j j

20 Indomethacin 0.19 0.01 0.37 j j j

21 Lorazepam 0.205 0.15 0.26 j j j

22 Methyldopa 0.265 0.265 0.265 j j j

23 Noscapine 0.27 0.27 0.27 j j j

24 Ampicillin 0.29 0.29 0.29 j j j

25 Penicillin G 0.295 0.01 0.58 j j j

26 Doxycycline 0.34 0.32 0.36 j j j

27 Nitredipin 0.35 0.35 0.35 j j j

28 Phenytoin 0.363 0.142 0.584 j +** +**

29 Penicillin V 0.37 0.37 0.37 j j +**

30 Clemastine 0.375 0.25 0.5 j j j

31 Propranolol 0.403 0.107 0.699 j j j

32 Lamotrigine 0.425 0.4 0.45 j +** j

33 Gentamicin 0.44 0.44 0.44 j +** j

34 Methadone 0.44 0.24 0.64 j j j

35 Tiapamil 0.44 0.43 0.45 j +** j

36 Erythromycin 0.455 0.41 0.5 j j j

37 Carbamazepine 0.465 0.24 0.69 j +** j

38 Phenobarbitone 0.5 0.4 0.6 j j j

39 Triprolidine 0.53 0.5 0.56 j j j

40 Flunitrazepam 0.54 0.54 0.54 j j j

41 Norfluoxetine 0.56 0.35 0.77 j j j

42 Verapamil 0.6 0.6 0.6 + + +

43 Chloramphenicol 0.655 0.655 0.655 + + +

44 Phenacetine 0.67 0.67 0.67 + + +

45 Fluoxetine 0.68 0.52 0.84 + j** +

46 Diazepam 0.7 0.1 1.3 + j** +

47 Theophylline 0.7 0.7 0.7 + + +

48 Caffeine 0.711 0.61 0.812 + + +

49 Medroxyprogesterone 0.72 0.72 0.72 + j** j**

50 Moclobemide 0.72 0.69 0.75 + + +

51 Paroxetine 0.75 0.39 1.11 + j** +

52 Imipramine 0.76 0.76 0.76 + + +

53 Minoxidil 0.76 0.76 0.76 + j** j**

54 Carbamazepine 0.79 0.79 0.79 + + +

55 Decarboetoxyloratadine 0.8 0.8 0.8 + + +

56 Timolol 0.8 0.8 0.8 + + +

57 Nordothiepin 0.85 0.69 1.01 + j** +

58 Disopyramide 0.9 0.9 0.9 + j** +

59 Zonisamide 0.93 0.84 1.02 + + +

60 Metronidazole 0.95 0.9 1 + + +

61 Tetracycline 0.95 0.6 1.3 + + +
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Table I. Continued

No. Compounds

Predicted M/P

Experimental classification

Predicted classification

Average Minimum Maximum LDA SVM

62 Diltiazem 0.98 0.98 0.98 + + +

63 Tinidazole 1.005 1.005 1.005 + + +

64 Clomipramine 1.03 0.84 1.22 + + +

65 Dothiepsulfoxide 1.18 0.89 1.47 + + +

66 Nortriptyline 1.18 0.5 1.62 + + +

67 Loratadine 1.2 1.2 1.2 + j** +

68 Sertraline 1.275 0.62 1.93 + + +

69 Doxepin 1.37 0.4 1.65 + + j**

70 Ciprofloxacin 1.495 0.85 2.14 + + j**

71 Amitriptyline 1.53 0.5 1.93 + + j**

72 Dothiepin 1.59 1.27 1.91 + + +

73 N-Desmethylsertraline 1.64 1.64 1.64 + + +

74 Cimetidine 1.7 1.7 1.7 + + +

75 Labetalol 1.7 0.8 2.6 + + +

76 Demethylcitalopram 1.75 1 2.5 + + +

77 Nordothiepsulfoxide 1.86 1.57 2.15 + + +

78 Atenolol 2.1 1.1 3.1 + + +

79 Citalopram 2.1 1.2 3 + + +

80 Codeine 2.16 2.16 2.16 + + +

81 Mianserin 2.2 2.2 2.2 + + +

82 Nicotine 2.25 1.5 3 + + +

83 Nitrofuranthoin 2.25 2.25 2.25 + + +

84 Acyclovir 2.35 0.6 4.1 + j** +

85 Morphine 2.46 2.46 2.46 + + +

86 Metoprol 2.55 2 3.1 + j** j**

87 Clozapine 3.555 2.79 4.32 + + +

88 Venlafaxine 3.8 2.8 4.8 + + +

89 Quazepam 4.13 4.13 4.13 + + +

90 Cannabis 4.24 0.08 8.4 + + +

91 Astemizole 4.4 4.4 4.4 + j** +

92 Nadolol 4.6 4.6 4.6 + j** +

93 Sumatriptan 4.9 4.1 5.7 + + +

94 Amphetamine 5.15 2.8 7.5 + + +

95 Satalol 5.4 5.4 5.4 + + +

96 Bupropion 5.545 5.545 5.545 + + +

Test setb

1 Alprazolam 0.001 0.001 0.001 j j j

2 Methotrexate 0.04 0.04 0.04 j j j

3 Prednisolone 0.13 0.13 0.13 j j j

4 Zolpidem 0.13 0.13 0.13 j j j

5 Norethindron 0.19 0.19 0.19 j j j

6 Nitrazepam 0.27 0.27 0.27 j +** j

7 Clonazepam 0.33 0.33 0.37 j j j

8 Bupivacaine 0.34 0.1 0.58 j j j

9 Oxprenolol 0.37 0.37 0.37 j +** j

10 Zopiclone 0.555 0.41 0.7 j +** +**

11 Norfluexetine 0.56 0.56 0.56 j j j

12 Holoperidol 0.64 0.59 0.69 + + +

13 Cotinine 0.78 0.78 0.78 + + +

14 Ethosuximide 0.8 0.8 0.8 + + +

15 Theobromine 0.82 0.82 0.82 + j** +

16 Paracetamol 0.88 0.76 1 + + +

17 Ethanol 0.9 0.9 0.9 + + +

18 Perfenazine 0.9 0.7 1.1 + + +

19 Desipramine 0.915 0.63 1.2 + + +

20 Vigabatrin 1 1 1 + + +

21 Lidocaine 1.07 0.25 1.89 + j** +

22 Nefopam 1.2 1.2 1.2 + j** +

23 Desmethyldoxepin 1.275 1.02 1.53 + j** +

24 Mexiletine 1.34 0.79 1.89 + + j**

25 Clofazim 1.35 1.35 1.35 + + j**

26 Chlorprothixene 1.48 0.38 2.58 + + +

27 Aspirin 1.63 0.06 3.2 + + +
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data could be misleading and were not applicable for predicting
new data. Therefore, the regulation M/P values can be applied
to indicate the class of drugs. Comparing with regression
models, the classification can offer some advantages to allow
better management of data that are often noisy. Thus, in this
paper, classification models were constructed to distinguish the
potential risk of a drug to nursing infants. Many algorithms
can be used for classification, e.g., nearest mean classifier
(NMC) (8), linear discriminant analysis (LDA) (9), K-nearest
neighbors classification (KNN) (10), and classification and
regression tree (CART) (11). Recently, support vector ma-
chine (SVM), as a new algorithm, was developed by the
machine learning community (12,13). Because of its remark-
able generalization performance, SVM has attracted attention
and gained extensive applications (14Y19), etc.

In this paper, SVM models were developed to distin-
guish the potential risk of drugs to nursing infants. Each
compound was encoded with 400 molecular structure descrip-
tors, which can be directly calculated from the drug"s
structure. The constructed models would evaluate the risk
of drugs when experimental M/P ratios have not been
investigated. Furthermore, it would provide some insight
into the grade of drugs that can transfer into milk.

MATERIALS AND METHODS

Data Set

The compounds under study consisted of 126 commonly
used drugs, whose experimental M/P values were taken from

the literature (5Y7,20Y25). For these drugs, if there existed
more than one M/P value, the average one was calculated as
the M/P ratio. As shown in Table I, the maximum ratio of the
data set was recorded as 5.545, whereas the minimum was 0.
Next, the M/P ratios were scaled in the internal [0, 1] and two
classes were defined, including Class 1 indicated as Bj’’
(49 drugs, 0 Q M/P Q 0.1) and Class 2 indicated as B+’’
(77 drugs, 1 Q M/P > 0.1).

Model Validation

The data set was randomly divided into a training set
(96 compounds) for model development/calibration and an
independent test set (30 compounds) for prediction. In
addition, to test the classified ability of the predictive model
for new drugs, an external data set of nine drugs whose M/P
values were currently unavailable was applied for LDA and
SVM models. Initially, bootstrapping validation, which
implies quantitative assessment of model robustness and its
predictive power, was applied to training set (26). Boosting
is a related technique that attempts to drive the test set error
rapidly to zero. It produces a series of predictors. The
training set used for each member of the series is based on
the performance of the preceding predictor(s). The method
creates new training sets by choosing patterns for which the
predictions of the previous predictors were bad more
frequently than those for which the predictions were good.
Thus, boosting attempts to produce new predictors for its
ensemble that are able to make better predictions for
patterns for which the current ensemble performance is poor.

28 Mepindolol 2.6 1 4.2 + + +

29 Procainamide 3.2 3.2 3.2 + + +

30 O-Desmethylvenlafaxine 3.3 2.8 3.8 + j** +

External test setc

1 Tylenol j j

2 Tempra j j

3 Acetaminophen j j

4 Prozac + j

5 Macrobid j j

6 Tetracycline + +

7 Prednisone + j

8 Propylthiouracil j j

9 Paxil j j

Table I. Continued

No. Compounds

Predicted M/P

Experimental classification

Predicted classification

Average Minimum Maximum LDA SVM

Table II. Five Descriptors and the Coefficients for LDAa

Des Chemical meaning Coefficients F to remove

Constant 1.740

log P n-OctanolYwater partition coefficient j6.092 46.881

#2 Randic index (order 2) 6.016 17.402

PCmax(C) Max. partial charge for a C atom j2.149 12.905

Ree(CC) Min. eYe repulsion for a CYC bond 1.250 9.036

CImin(CC) Min. coulombic interaction for a CYC bond 0.696 5.152

a Discriminant function M/P = 1.740 j 6.092 log P + 6.016#2
j 2.149 PCmax(C) + 1.250 Ree(CC) + 0.696 CImin(CC).

aThe predictions for the training set are leave-one-out predictions.
bThe predictions for the test set and the external test set are based on the final model using the training set.
**Misclassified samples.
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The resampled training set is assembled using probabilistic
selection, with the exception that the probability assigned to
each sample depends on the prediction error for that sample
by the existing ensemble. According to this method, each
training pattern is selected with a probability 1/N each time,
where N is the total number of patterns in the original
sample. Many of the original examples may be repeated in
the resampled training set, whereas others may be left out.
The method constructs a proxy universe equal in size to the
original sample and is, in effect, equivalent to sampling
without replacement from an infinitely large replicated
universe. Typically, 200 bootstrap replications are sufficient
to estimate confidence intervals (27). For this study, 1000
replications are used. Goodness-of-fit of the model is tested
by the accuracy of classification and the number of mis-
classified cases. In addition, to test the classified ability of the
predictive model for new drugs, an external data set of nine
drugs whose M/P values were currently unavailable, was
applied for LDA and SVM models.

Descriptor Generation and Selection

The structures of these compounds were drawn with the
ISIS DRAW 2.3 program (28). The final geometries were
obtained with the semiempirical PM3 method in the
HYPERCHEM 6.03 program (29). All calculations were
carried out at restricted HartreeYFock level with no config-
uration interaction. The molecular structures were optimized
using the PolakYRibiere algorithm until the root-mean-
square gradient was 0.001. Then the resulted geometry was
transferred into the CODESSA software, developed by

Katritzky et al. (30,31), which can calculate constitutional,
topological, geometrical, electrostatic, and quantum chemical
descriptors. For this study, 400 descriptors were calculated
for each compound, including 38 constitutional descriptors,
38 topological descriptors, 12 geometrical descriptors, 71 elec-
trostatic descriptors, and 241 quantum chemical descriptors.
Constitutional descriptors are related to the number of atoms
and bonds in each molecule, e.g., number of C atoms, number
of bonds, and number of rings. Topological descriptors
describe the atomic connectivity in the molecule including
valence and nonvalence molecular connectivity indices calcu-
lated from the hydrogen-suppressed formula of the molecule,
encoding information about the size, composition, and the
degree of branching of a molecule, e.g., Wiener index, Randic
index, and structural information content. The geometrical
descriptors describe the size of the molecule and require 3D
coordinates of the atoms in the given molecule, e.g., XY
Shadow, molecular volume, and molecular surface area. Electro-
static descriptors reflect the characteristics of the charge distri-
bution of the molecule, e.g., max/min partial charge, count of H
acceptor sites, and topographic electronic index. The quantum
chemical descriptors provide information about binding and
formation energies, partial atom charge, dipole moment, and
molecular orbital energy levels, e.g., HOMO/LUMO energy,
max/min eYe repulsion, and max/min eYn attraction.

Next, the stepwise variable selection method was applied
to choose proper features for the large set of descriptors.
F value was used as the criterion to decide which descriptor
should be removed/entered into the discriminant function.
The entry F value is 3.84 and the removal F value is 2.71.
Thus, the obtained five descriptors, together with their
coefficients in function, and F values are all listed in Table II.
The correlation matrix of the five selected descriptors is shown
in Table III. It can be seen that the linear correlation
coefficient between any of two descriptors is less than 0.85,
which means that the descriptors are independent.

LDA Method

Discriminant analysis is useful for situations where a
user wants to build a predictive model of group membership
based on the observed characteristics of each case. The
procedure generates a discriminant function (or, for more
than two groups, a set of discriminant functions) based on
linear combinations of the predictor variables that provide
the best discrimination between the groups. The functions
are generated from a sample of cases for which group
membership is known; the functions can then be applied to
new cases with measurements for the predictor variables but
unknown group membership.

Table III. Correlation Matrix of the Five Selected Descriptors

log P #2 PCmax(C) Ree(CC) CImin(CC)

log P 1.000

#2 0.590 1.000

PCmax(C) 0.628 0.822 1.000

Ree(CC) j0.108 j0.465 j0.480 1.000

CImin(CC) j0.176 j0.189 j0.274 0.531 1.000

Fig. 1. Comparison of the results obtained from the LDA and SVM

method.
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The basic theory of linear discriminant analysis (LDA) is
to classify the dependent term by dividing an n-dimensional
descriptor space into two regions separated by a hyperplane
defined by a linear discriminant function (32,33) as follows:

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn

where Y is the discriminant score, that is, the dependent
variable; X1 j Xn represents the specific descriptors; and b
corresponds to weights associated with the respective
descriptors. The linear classification was performed in a
stepwise manner: at each step the variable adding the most to
the separation of groups is entered into (or the variable
adding the least is removed from) the discriminant function.
The criteria for the selection were as follows: comparison of
the tabulated F, determination of the percentage of mole-
cules correctly classified, and prediction of the classification
of molecules not included in the training process. As soon as
we have obtained the optimal discrimination conditions for
classifying a particular compound, the next step is to obtain
new compounds. For this purpose, the final LDA equation
was used to select new agents, and the molecules were
classified by applying them to the discriminant function.

SVM Method

The following is a brief description of the SVM
algorithm. A more detailed description can be found in
Vapnik’s (12) and Burges’s articles (13).

For a binary classification problem, assume that we have
a set of samples, i.e., a series of input vectors xi 2 Rd (i = 1, 2,
. . . , N), with corresponding labels yi Z {j1, +1} (i = 1, 2, . . . ,
N). Here, +1 and j1 indicate the two classes. The goal here is
to construct one binary classifier or to derive one decision
function from the available samples, which has a small
probability of misclassifying a future sample. Both the basic
linear separable case and the most useful linear nonseparable
case (for most real life problems) are considered here.

For a linear separable case, there exists a separating
hyperplane whose function is w � xþ b ¼ 0 which implies the
following:

yi w � xi þ bð Þ � 1 i ¼ 1; 2; . . . ;N

where yi is the class index, wwww is a vector normal to the
hyperplane, b

�
�
�
�= wwwwk k is the perpendicular distance from the

hyperplane to the origin, and wwww2 is the Euclidean norm of wwww:
By minimizing 1

2 wwwwk k2 subject to this constraint, the SVM
approach tries to find a unique separating hyperplane, which
maximizes the distance between the hyperplane and the
nearest data points of each class. The classifier is called the
largest margin classifier.

By introducing Lagrange multipliers ai, the SVM train-
ing procedure amounts to solving a convex quadratic
programming (QP) problem. The solution is a unique
globally optimized result, and can be shown as:

w ¼
XN

i¼1

yiaixi

Only if the corresponding ai > 0, are these xi called support
vectors. When an SVM is trained, the decision function can
be written as:

f xð Þ ¼ sign
XN

i¼1

yiai x � xið Þ þ b

 !

where sign is the sign of a function. For a linear nonseparable
case, allowing for training errors can be done by introducing
positive slack variables xi (i = 1, 2, . . . , N) in the constraints,
which then become:

yi w � xi þ bð Þ � 1� �i �i � 0; i ¼ 1; 2; . . . ;N

We want to simultaneously maximize the margin and
minimize the number of misclassifications. This can be
achieved by changing the objective function from 1

2 wk k2 to
1
2 wk k2 þ C

PN

i¼1
�k

i :

Minimize 1
2 wk k2 þ C

PN

i¼1
�k

i subject to yi w � xi þ bð Þ �
1þ �i � 0; i = 1, 2, . . . , N, �i Q i = 1, 2, . . . , N.

Error weight C is a regularization parameter to be chosen
by the user. It controls the size of penalties assigned to errors.
The optimization problem is convex for any positive integer k.
For k = 1 and k = 2, it is also a quadratic programming problem.

For a binary nonlinear classification problem, SVM
performs a nonlinear mapping 6(�) of the input vector xi

from the input space Rd into a higher-dimensional Hilbert
space H, and constructs an optimal separating hyperplane. In
the linear separable case, we know that the algorithm only
depends on inner products between training examples and
test examples. Thus we can generalize to nonlinear case. The
inner products are substituted by the kernel function
k xi; xj

� �

¼ 6 xið Þ�6 xj

� �

, in the input space. Then, the decision
function implemented by SVM can be written as:

f xð Þ ¼ sign
XN

i¼1

yiaik x; xið Þ þ b

 !

Two typical kernel functions are listed below;

Polynomial function k xi; xj

� �

¼ xi � xj þ 1
� �d

Gaussian radial basis function k xi; xj

� �

¼ exp �+1 xi � xj

�
�

�
�

2
� �

RESULTS

Results of LDA

Results of the LDA model using bootstrapping valida-
tion are listed in Table I, together with misclassified samples
marked by double asterisks. This gave an accuracy of 78.85%

Table IV. Optimal +, C, Number of Support Vectors, and Accuracy

of Training Set

+ C Number of support vectors Accuracy (%)

0.215 50 60 90.63

0.220 50 63 90.63

0.785 60 73 90.63
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for Class 1, 77.03% for Class 2, 79.17% for training set,
73.33% for test set, and 77.78% for the whole data set (see
Fig. 1). In addition, the predictive results of the external nine
drugs are also listed in Table I.

Results of SVM

SVM was used to develop a nonlinear model. As with other
multivariate statistical models, the performance of SVM for
classification depends on the combination of several parameters.

First, the kernel functions should be established, because
this determines the sample distribution in the mapping space.
There are a number of kernel functions, including linear,
polynomial, spline, and radial basis function. For classifica-
tion tasks, a commonly variant is the Gaussian radial basis
function because of its good general performance (34). Next
is the capacity parameter C, a regularization parameter
controlling the tradeoff between maximizing the margin and
minimizing the training error. If C is too small, then
insufficient stress will be placed on fitting the training data.
If C is too large, then the algorithm will overfit the training
data. To make the learning process stable, a large value
should be set up for C (35). In this study, the initial value was
100. The third parameter is +. This parameter greatly affects
the number of support vectors (SV), which have a close
relation with training time. Too many support vectors can
produce overfitting and make the training time longer.
Parameter + also controls the amplitude of the Gaussian
function and, therefore, controls the generalization ability of
SVM. Based on our experience, these two parameters exhibit
strong interactions. Therefore, grid search (GS), which has
been used either formally or informally for SVM parameter
selection, was performed in this study (36). We ranged
parameter + and C from 0.005 to 0.9 with 0.005 as the
increment, and from 10 to 1000 with 10 as the increment,
respectively. Parameters +, C, number of support vectors, and
accuracy of the training set are shown in Table IV. It can be
seen from the table that the three groups of + and C led to the
same accuracy of training set. The lowest number of support
vectors prompted the selection of + = 0.215 and C = 50 as the
optimal values. Thus the optimal model was obtained and the
predictive results of training set, test set, and external set are
all listed in Table I. It gave an accuracy of 92.30% for Class 1,
89.19% for Class 2, 90.63% for training set, 90.00% for the
test set, and 90.48% for the whole data set (see Fig. 1).

DISCUSSION

Figure 1 compares the predictive results obtained from
LDA and SVM models. Performance-wise, SVM gave better
results than LDA, which implies that, using the same descrip-
tors, the SVM method is capable of recognizing nonlinear
relationships; in contrast, LDA approaches can only capture
linear relationships between molecular properties and descrip-
tors. Thus, SVM method can be used as an effective tool in
distinguishing the potential risk of drugs to nursing infants.

In addition, it is necessary to gain some insight into
factors that are likely to relate to the transfer process of the
drug compounds by interpreting the descriptors used in the
study. Log P has been widely used as a measure of
hydrophobicity or lipophilicity, which is the ratio of a

chemical"s concentration in the n-octanol phase to its
concentration in the aqueous phase of a two-phase system
at equilibrium (37). Log P represents the hydrophobicity of
molecules and reflects the ability of molecules to penetrate
the biomembrane and reach the interacting sites. In most
cases, it seemed evident that log P terms were used to access
biological properties relevant to drug action, cellular uptake,
metabolism, bioavailability, and toxicity. For the process of
drug"s transfer, lipophilicity is approximately correlated to
passive transport across cell membranes and the ability of a
compound to partition through a membrane. Drugs are
expected to partition into milk in accordance with their lipid
characteristics. High lipid solubility favors protein binding,
reducing the amount of drug available for diffusion into milk.
Therefore, as log P increases, log M/P decreases. In sum-
mary, log P played an important role and it was evident that
very little real progress could be made in understanding the
drug transfer process without considering hydrophobicity.
Randic index (order 2) (#2), a topological descriptor, encodes
the size, shape, and degree of branching of the compound,
and also relates to the dispersion interaction among mo-
lecules (38). It is always used to predict if molecular cavities
can be filled up with a candidate molecule. With the ap-
plication of molecular graphics, the fit docking or intercala-
tion of molecules into cavities in macromolecular simulations
became an important consideration for a drug"s protein
binding. The maximum partial charge for a C atom
[PCmax(C)] and the minimum coulombic interaction for a
CYC bond [CImin(CC)] belong to electrostatic descriptors,
which reflect the characteristics of charge distribution in the
molecule. The empirical partial charges in the molecule are
calculated using the approach proposed by Zefirov (39). This
method is based on the Sanderson electronegativity scale and
uses the concept that represents molecular electronegativity
as a geometric mean of atomic electronegativities. Min eYe
repulsion for a CYC bond [Ree(CC)] is one of the quantum
chemical descriptors used to establish conformational stabil-
ity, chemical reactivity, and intermolecular interactions. The
descriptor characterizes the nuclear repulsion-driven process-
es in the molecule and may be related to the conformational
(rotational, inversional) changes or atomic reactivity in the
molecule. Energy was calculated for an optimized conforma-
tion with the most stable geometry, or minimum energy
structure using molecular or quantum mechanics to deter-
mine bond strengths, atomic hybridizations, partial charges,
and orbitals from the positions of the atoms and the net
charge.

From the discussions above, it can be seen that steric and
electric factors are likely two major components in the
transfer process for drugs, and all the descriptors involved
in the model, which have explicit physical meaning, may
account for the structural features responsible for the M/P
ratio of drug compounds.

CONCLUSION

In this work, linear discriminant analysis (LDA) and
support vectors machine (SVM) were used for classifying the
milk/plasma (M/P) concentration ratio of a set of 126 drug
compounds using descriptors calculated from the molecular
structure alone. The LDA model could provide some insight
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into what structural features can best describe the process of
drug transfer. The SVM method proved to be a highly
effective classification tool because of its structural risk
minimization principle, which minimizes an upper bound of
the generalization error rather than the training error. This
eventually leads to better generalization than neural net-
works, which implement the empirical risk minimization
(ERM) principle and do not converge to global solutions.

Although the classification for M/P ratios is only one
component of the complex process for a drug transfer to human
milk, it probably forms the most selective filter. We would expect
computational methods to have a similar effect on the search for
other drugs whose M/P ratios are not currently available.
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